Schmid, G. \& Etzrodt, G. (1977). J. Organomet. Chem. 137, 367-371.
Schmid, G., Etzrodt, G. \& Batzel, V, (1976). J. Organomet. Chem. 112, 345-353.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sumner, G. G., Klug, H. P. \& Alexander, L. E. (1964). Acta Cryst. 17, 732-742.

Acta Cryst. (1987). C43, 635-636

Structure of Pentacarbonyl(tribromophosphine)chromium(0)

By H. Jelinek-Fink, E. N. Duesler and R. T. Paine*
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA

(Received 14 July 1986; accepted 3 October 1986)

Abstract

Cr}(\mathrm{CO})_{5}\left(\mathrm{PBr}_{3}\right)\right], M_{r}=462 \cdot 75\), triclinic, $P \overline{1}$, $a=6.695$ (1), $\quad b=6.823$ (1), $c=13.641$ (3) $\AA, \quad \alpha=$ 88.07 (1), $\beta=87.16$ (1), $\gamma=87.73$ (1) ${ }^{\circ}, \quad Z=2, V$ $=621.5(2) \AA^{3}, \quad D_{x}=2.47 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.71069 \AA, \mu=112.9 \mathrm{~cm}^{-1}, T=293 \mathrm{~K}, F(000)=428$, $R=7 \cdot 12 \%$ for 1901 unique observed reffections. The structure displays a slightly distorted octahedral geometry about the Cr atom with five carbonyl C atoms and the P atom of PBr_{3} occupying the coordination sites. The $\mathrm{Cr}-\mathrm{P}, \mathrm{Cr}-\mathrm{CO}$ (trans) and average $\mathrm{Cr}-\mathrm{CO}$ (cis) distances are 2.263(3), 1.892(11) and 1.903 (11) \AA, respectively.

Introduction. There remains considerable interest in the synergic σ-donor/ π-acceptor characteristics of phosphine ligands toward low-valent-metal carbonyl fragments. Previous studies (Plastas, Stewart \& Grim, 1973; Cotton, Darensbourg \& Isley, 1981) have suggested that there is an approximate correlation between $v_{\mathrm{co}}(E$ mode $)$ and $M-\mathrm{P}$ bond distances in metal carbonyl phosphine complexes which should make comparative predictions on the nature of new phos-phine-metal interactions in $X_{3} \mathrm{P} M(\mathrm{CO})_{5}(M=\mathrm{Cr}$, Mo and $\mathrm{W} ; X=$ halide, hydride, alkoxide, alkyl and aryl) possible. Utilizing this correlation and published infrared spectra (Fischer \& Knauss, 1969) it would be expected that the $X_{3} \mathrm{PCr}(\mathrm{CO})_{5}(X=$ halide) complexes should display some of the shortest metal-phosphine bond distances. The crystal-structure determination of the title compound was undertaken to partially test this prediction.

Experimental. The complex was prepared by literature techniques (Fischer \& Knauss, 1969) and air-sensitive orange crystals were obtained by sublimation. Crystal $0.1 \times 0.3 \times 0.4 \mathrm{~mm}$ (glass capillary); Syntex $P 3 / F$ diffractometer, Mo $K \alpha$ radiation, graphite monochromator; cell parameters from a least-squares fit of 25 reflections with $10<2 \theta<32^{\circ}$, space group $P \overline{1}$; no

[^0]absorption correction was applied; data collected to $2 \theta_{\text {max }}=55^{\circ}$ with $\pm h, \pm k, \pm l$ ranges 0 to 8,8 and 17 respectively; $\theta-2 \theta$ scan mode, $1 \cdot 2^{\circ}$ range, $4-30^{\circ} \mathrm{min}^{-1}$ speed; three standard reflections monitored every 141 reflections, 20% intensity variation; rapid crystal deterioration after 48 h of exposure necessitated the merging of data sets for two crystals; 7861 reffections measured, $R_{\text {int }} 4.4 \% ; 2870$ unique data, 1901 data with $F>5 \sigma(F)$ used in solution and refinement (based on F 's); structure solved by direct methods; blocked-cascade least-squares refinement using anisotropic thermal parameters for all atoms, 136 parameters, $R=0.071, w R_{F}=0.068, w=1 /\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0.00095 F_{o}^{2}\right], S=1.624,(\Delta / \sigma)_{\max }=-0.091$ for $U(11)$ of $\mathrm{C}(2)$; max. and min. heights in final difference Fourier synthesis 1.64 and $-1.46 \mathrm{e} \AA^{-3}$; atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); computer programs from SHELXTL (Sheldrick, 1981). The relatively high R index reflects the instability of the compound during X -ray exposure.

Discussion. Atom coordinates are given in Table 1 and bond distances and angles in Table $2 . \dagger$ A view of the molecular structure and a stereoview of the unit-cell contents are shown in Figs. 1 and 2. The Cr atom displays pseudooctahedral symmetry and it is bonded to the C atom of five terminal CO ligands and the P atom of PBr_{3}. The $\mathrm{Cr}-\mathrm{P}$ bond distance is, indeed, short compared to $\mathrm{Cr}-\mathrm{P}$ distances found in $\mathrm{Cr}(\mathrm{CO})_{5}{ }_{5}$ $\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \quad 2 \cdot 422(1), \quad \mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3} \quad 2 \cdot 309(1)}$ (Plastas et al., 1973), $\quad \mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3}$ 2.364 (1) (Cotton et al., 1981) and $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}-$ (SH) 2.344 (2) \AA (Meier, Strähle \& Lindner, 1976). Construction of a plot of $d_{\text {Cr-p }} v s v_{\mathrm{Co}}(E)$ utilizing the

[^1]limited amount of data available and the observed $v_{\mathrm{co}}(E)$ for $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{s}, 1986 \mathrm{~cm}^{-1}$, leads to a prediction of $d_{\text {Cr-P }}$ in $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{s}$ of $2 \cdot 12-2 \cdot 22 \AA$. To the degree that the observed distance falls outside this range may indicate the importance of nonbonded steric repulsions between the cis carbonyls and the Br atoms.

The metal-C bond distances should also be affected by the phosphine σ-donor $/ \pi$-acceptor character, with the $M-\mathrm{CO}_{\mathrm{ax}}$ distance being the most affected. Previous studies have shown that increasing π-acceptor strength by the phosphine results in an increasing set of $M-\mathrm{CO}$ distances: $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Cr}-\mathrm{C}_{\mathrm{ax}} 1.861$ (4), $\mathrm{Cr}-$ $\mathrm{C}_{\text {eq }}$ (av.) 1.896 (5); $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{3} \mathrm{Cr}-\mathrm{C}_{\mathrm{ax}}$ 1.876 (5), $\mathrm{Cr}-\mathrm{C}_{\text {eq }}$ (av.) 1.891 (5); $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ $\mathrm{Cr}-\mathrm{C}_{\mathrm{ax}} 1.845$ (4), $\mathrm{Cr}-\mathrm{C}_{\mathrm{eq}}$ (av.) 1.880 (4) \AA. In the present study the π-acceptor strength is strongest in the series for which data are available and the $\mathrm{Cr}-\mathrm{C}_{\mathrm{ax}}$ and $\mathrm{Cr}-\mathrm{C}_{\text {eq }}$ (av.) distances are also the largest in the series and similar to that found in $\mathrm{Cr}(\mathrm{CO})_{6}, 1.909 \AA$.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters for $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{5}$

	x	y	z	$U_{\mathrm{eq}}^{*}\left(\AA^{2}\right)$
	x			
$\operatorname{Br}(1)$	$0.11014(19)$	$-0.26252(25)$	$0.95078(9)$	$0.0768(5)$
$\operatorname{Br}(2)$	$0.58435(16)$	$-0.36433(17)$	$0.87449(8)$	$0.0568(4)$
$\operatorname{Br}(3)$	$0.40221(21)$	$0.10802(16)$	$0.87243(9)$	$0.0643(4)$
P	$0.32223(35)$	$-0.18467(35)$	$0.82743(18)$	$0.0384(7)$
Cr	$0.22064(21)$	$-0.21935(21)$	$0.67341(11)$	$0.0368(5)$
$\mathrm{C}(1)$	$0.1053(16)$	$-0.4591(16)$	$0.7175(8)$	$0.051(4)$
$\mathrm{O}(1)$	$0.0323(14)$	$-0.6009(12)$	$0.7436(7)$	$0.077(4)$
$\mathrm{C}(2)$	$0.1223(16)$	$-0.2499(16)$	$0.5474(8)$	$0.049(3)$
$\mathrm{O}(2)$	$0.0589(15)$	$-0.2652(14)$	$0.4724(7)$	$0.081(4)$
$\mathrm{C}(3)$	$-0.0214(15)$	$-0.0803(14)$	$0.7061(8)$	$0.048(3)$
$\mathrm{O}(3)$	$-0.1696(12)$	$0.0025(13)$	$0.7230(7)$	$0.084(4)$
$\mathrm{C}(4)$	$0.3400(16)$	$0.0179(15)$	$0.6274(7)$	$0.048(3)$
$\mathrm{O}(4)$	$0.4093(14)$	$0.1577(13)$	$0.5985(6)$	$0.075(3)$
$\mathrm{C}(5)$	$0.4666(16)$	$-0.3541(15)$	$0.6340(8)$	$0.052(4)$
$\mathrm{O}(5)$	$0.6125(13)$	$-0.4270(14)$	$0.6094(6)$	$0.077(3)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized \mathbf{U} tensor (Willis \& Pryor, 1975).

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{5}$

$\mathrm{Br}(1)-\mathrm{P}$	$2 \cdot 212$ (3)	$\mathrm{Br}(2)-\mathrm{P}$	$2 \cdot 210$ (3)
$\mathrm{Br}(3)-\mathrm{P}$	$2 \cdot 203$ (3)	$\mathrm{P}-\mathrm{Cr}$	2.263 (3)
$\mathrm{Cr}-\mathrm{C}(1)$	1.903 (11)	$\mathrm{Cr}-\mathrm{C}(2)$	1.892 (11)
$\mathrm{Cr}-\mathrm{C}(3)$	1.887 (10)	$\mathrm{Cr}-\mathrm{C}(4)$	1.907 (11)
$\mathrm{Cr}-\mathrm{C}(5)$	1.916 (11)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.140 (14)
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 136$ (14)	$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 139$ (13)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 128$ (14)	$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 120$ (14)
$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(2)$	98.3 (1)	$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(3)$	99.5 (1)
$\mathrm{Br}(2)-\mathrm{P}-\mathrm{Br}(3)$	$100 \cdot 8$ (1)	$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Cr}$	117.4 (1)
$\mathrm{Br}(2)-\mathrm{P}-\mathrm{Cr}$	118.1 (1)	$\mathrm{Br}(3)-\mathrm{P}-\mathrm{Cr}$	118.9 (1)
$\mathrm{P}-\mathrm{Cr}-\mathrm{C}(1)$	88.3 (3)	$\mathrm{P}-\mathrm{Cr}-\mathrm{C}(2)$	177.1 (3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(2)$	$90 \cdot 0$ (5)	$\mathrm{P}-\mathrm{Cr}-\mathrm{C}(3)$	90.2 (3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(3)$	90.4 (4)	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	87.5 (5)
$\mathrm{P}-\mathrm{Cr}-\mathrm{C}(4)$	92.3 (3)	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(4)$	178.8 (4)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(4)$	89.5 (5)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(4)$	90.7 (4)
$\mathrm{P}-\mathrm{Cr}-\mathrm{C}(5)$	92.0 (3)	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(5)$	91.4 (5)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(5)$	90.4 (5)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(5)$	177.2 (4)
$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(5)$	87.5 (5)	$\mathrm{Cr}-\mathrm{C}(1)-\mathrm{O}(1)$	178.6 (10)
$\mathrm{Cr}-\mathrm{C}(2)-\mathrm{O}(2)$	178.2 (10)	$\mathrm{Cr}-\mathrm{C}(3)-\mathrm{O}(3)$	177.8 (10)
$\mathrm{Cr}-\mathrm{C}(4)-\mathrm{O}(4)$	178.7 (9)	$\mathrm{Cr}-\mathrm{C}(5)-\mathrm{O}(5)$	177.6 (9)

Fig. 1. Molecular structure and atom-labeling scheme for $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{5}$ (30% thermal ellipsoids).

Fig. 2. Stereoview of the contents of the unit cell of $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{5}$.

Lastly, it is noticed that the average $\mathrm{P}-\mathrm{Br}$ bond distance in $\mathrm{Br}_{3} \mathrm{PCr}(\mathrm{CO})_{5}, 2.208 \AA$, is slightly shorter than in uncoordinated $\mathrm{PBr}_{3}, 2 \cdot 220$ (3) \AA (Kuchitsu, Shibata \& Yokozeki, 1971).

The Donors of the Petroleum Research Fund of the American Chemical Society are gratefully thanked for support of this study.

References

Cotton, F. A., Darensbourg, D. J. \& Isley, W. H. (1981). Inorg. Chem. 20, 578-583.
Fischer, E. O. \& Knauss, L. (1969). Chem. Ber. 102, 223-229.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kuchitsu, K., Shibata, T. \& Yokozeki, A. (1971). Inorg. Chem. 10, 2584-2587.
Meier, W.-P., Strähle, J. \& Lindner, E. (1976). Z. Anorg. Allg. Chem. 424, 154-160.
Plastas, H. J., Stewart, J. M. \& Grim, S. O. (1973). Inorg. Chem. 12, 265-272.
Sheldrick, G. M. (1981). Nicolet SHELXTL Operations Manual, revision 3. Nicolet XRD Corporation, Cupertino, California.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.

[^0]: * Address correspondence to this author.

[^1]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43462 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1987 International Union of Crystallography

